RIEGL VUX-1HA²²

- очень высокая скорость измерений до 1,800,000 изм./сек
- очень высокая скорость сканирования 250 сканов / секунду
- свободно выби<mark>раемая частота импульсов PRR</mark>
- 5 мм геодезическая точность ассиracy
- поле зрения 360° для неограниченного сбора данных
- регулярный шаблон точек, идеально паралелльные линии сканирования
- уникальные технологии RIEGL обеспечивают:
 - оцифровку отраженного сигнала
 - онлайн обработку формы сигнала
- автоматическое разреш<mark>ение</mark> МТА-неоднозначности
- одновременное отслеживание нескольких целей - практически неограниченное число отраженных сигналов для каждого лазера
- компактный (227х180х125 мм), легкий (3.5 кг), и прочный
- удобный для установки
- механические и электрические интерфейсы для установки ИНС
- электрический интерфейс для данных GPS и синхроимпульса (1PPS)
- интерфес LAN-TCP/IP

www.riegl.ru

• Внутреннее хранилище данных на твердотельном диске SSD, 1 ТБ

посетите наш сайт

Высокоточный кинематический лазерный сканер RIEGL's VUX-1HA²² - это очень высокоросокоростная бесконтактная система измерения профилей, использующая узконаправленный лазерный луч и механизм быстрой строчной развертки лазера, обеспечивающий поле зрения 360 градусов без разрывов.

Высокопроизводительный импульсный лазерный дальномер, основанный на хорошо зарекомендовавшей себя технологии оцифровки отраженного сигнала *RIEGL* с последующей обработкой сигналов в режиме онлайн, обеспечивает превосходные возможности измерения даже в неблагоприятных атмосферных условиях и отличное распознование отраженных сигналов от нескольких целей.

RIEGL VUX-1HA²² - это компактный и легкий лазерный сканер, который можно устанавливать в любой ориентации и даже в условиях ограниченного пространства на наземных транспортных средствах, туннельных измерительных устройствах, гидроциклах и т. д.

Сканеру требуется только один источник питания, и он предоставляет данные строчной развертки через встроенный интерфейс LAN-TCP/IP. Поток двоичных данных может быть легко декодирован с помощью программного обеспечения, разработанного пользователем, с использованием доступной библиотеки программного обеспечения RiVLib.

Области применения:

дороги:

- Картографирование транспортной инфраструктуры
- Съемка дорожного покрытия
- Сбор картографических данных для беспилотных автомобилей
- Моделирование городов
- Сбор данных для ГИС и систем управления имуществом
- Исполнительная съемка

ЖЕЛЕЗНЫЕ ДОРОГИ:

- Быстрый и безопасный сбор с минимальными изменениями расписания движения поездов
- Мониторинг железнодорожного полотна и инфраструктуры
- Моделирование для выявления коллизий и анализа просветов

Технические характеристики RIEGL VUX®-1HA²²

Классификация лазерного излучателя

Класс лазера 1 (безопасный для глаз) в соответствии с 60825-1:2014

Данное положение распространяется также и на инструменты, доставляемые В США в соответствии с 21 CFR 1040.10 и 1040.11 за исключением IEC 60825-1 Ed.3., относящихся к Laser Notice No. 56 от 8 мая 2019.

Дальность измерений Принцип измерений

измерение времени полета, оцифровка отраженных сигналов, онлайн обработка формы сигнала, разрешение МТА-неоднозначности

Частота повторения импульсов PRR 1) 2)	300 кГц	500 кГц	1000 кГц	1250 кГц	1500 кГц	1800 кГц
Макс. измеряемое расстояние ^{3) 4)}						
до целей с коэф. отражения ρ ≥ 10 %	170 м	130 м	85 м	85 м	85 м	85 м
до целей с коэф. отражения р ≥ 80 %	475 м	370 м	235 м	235 м	235 м	235 м
Макс. количество принятых сигналов одного импульса ⁵⁾ 15		15	9	7	5	4

Округленные значения. Возможна установка промежуточных значений PRR.

3) Типичные данные для средних условий. Максимальная дальность указана для плоских целей с размером, превышающим размер диаметра лазерного пятна, перпендикулярных углу падения, для атмосферы при видимости 23 км. В ярком солнечном свете, макс. диапазон может быть меньше чем при пасмурном небе.

4) Неоднозначность разрешается с помощью постобработки в программном обеспечение RiUNITE.
5) Если получено более одного отражения, общая мощность лазера разделяется, и достижимая дальность уменьшается.

Наименьшее измеряемое расстояние Точность 6) 8) Повторяемость 7) 8) Частота повторения импульсов 1)9) Макс. эффективная скорость измерений ¹⁾ Интенсивность эхо сигнала Длина волны лазера

Угол расхождения луча Размер пятна лазерного луча

6) Точность степень соответствия измеряемой величины с ее действительным (истинным) значением.
7) Уровень точности, которая так же называется воспроизводимость или повторяемость, это способность в дальнейшем показывать тот же самый результат.

Характеристики сканера

Механизм сканирования

Поле зрения (выбирается)

Механизм развертки (выбирается)

Угловой интервал сканирования $\Delta \ \theta$ (выбирается) между двумя последовательными лазерными импульсами

Разрешение угловых измерений

Внутренний синхронизатор времени

Сихронизация сканирования (дополнительно)

Интерфейсы данных

Настройка

Вывод данных сканирования

Интерфейс ГНСС

Внутренее хранилище данных

Внешняя камера

Внешняя антенна ГНСС

Общая техническая информация

Входное напряжение / потребление 12) Основные размеры ¹³⁾

VUX-1HA без / с вентилятором охлаждения Bec 13)

VUX-1HA без / с вентилятором охлаждения

Влажность Класс защиты

Температурный диапазон ¹⁴⁾

1 м @ PRR \geq 1 МГц, 1.2 м @ PRR < 1 МГц 5 мм 3 MM

до 1800 кГц

до 1 800 000 изм./сек. (@ 1800 кГц PRR & 360° FOV)

принятый сигнал представляется рядом 16 -ти битных отсчетов

ближний ИК диапазон

станд. 0.35 мрад @ 1/e 10), станд. 0.5 мрад @ 1/e^{2 11)}

4.5 мм @ выход, 5 мм @ 5 м, 6.6 мм @ 10 м,

13 мм @ 25 м, 25 мм @ 50 м, 50 мм @ 100 м

8) СКО на 30 м дистанции по условиям испытаний RIEGL.
 9) Выбирается пользователем, возможна установка промежуточных значений PRR.
 10) Измерено в точках 1/е. 0.35 мрад соответствует увеличению диаметра луча 35 мм на каждые 100 м

дистанции. 11) Измерено в точках 1/e². 0.50 мрад соответствует увеличению диаметра луча 50 мм на каждые 100 м дистанции

вращающееся зеркало

360° "полный круг"

10 - 250 оборотов в секунду соответствует 10 - 250 сканлиний/сек $0.002^{\circ} \le \Delta \ \vartheta \le 0.3^{\circ}$

 0.001°

для добавления меток времени в данные сканирования в реальном времени синхронизация вращения сканера

LAN 10/100/1000 Мбит/сек

LAN 10/100/1000 Мбит/сек или USB 2.0

Serial RS-232 интерфейс для данных с информацией о ГНСС-времени,

TTL вход для синхронизации импульса 1PPS

1 ТБайт SSD

TTL вход/выход

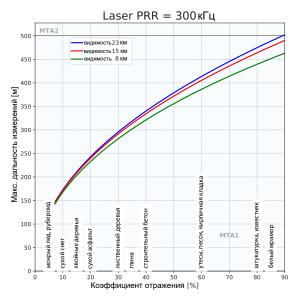
SMA-коннектор

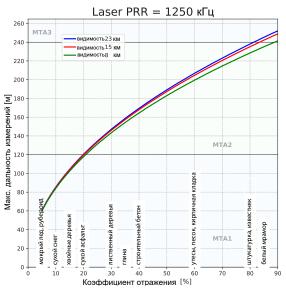
11 - 34 В пост. тока / станд. 65 Вт

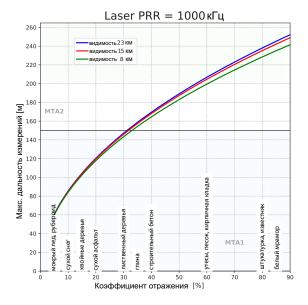
227 x 180 x 125 mm / 227 x 209 x 129 mm

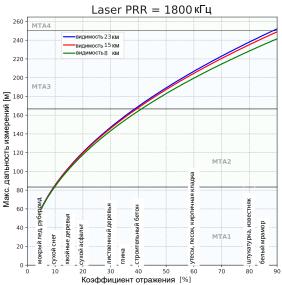
3.5 кг / 3.75 кг

макс. 80 % без конденсации при 31°C


ІР64, пыле и влагозащитный


от -20°C ¹⁵⁾ до +40°C (работа) / от -20°C до +50°C (хранение)


температуре +15°C и выше. Если движущаяся платформа не может обеспечить необходимую скорость потока, необходимо использовать охлаждающий вентилятор (входит в комплект поставки).
15) Непрерывное сканирование, если прибор включен, когда внутренняя температура равна или выше 0°C и неподвижный воздух. Изоляция сканера соответствующим материалом позволит работать при еще


более низких температурах

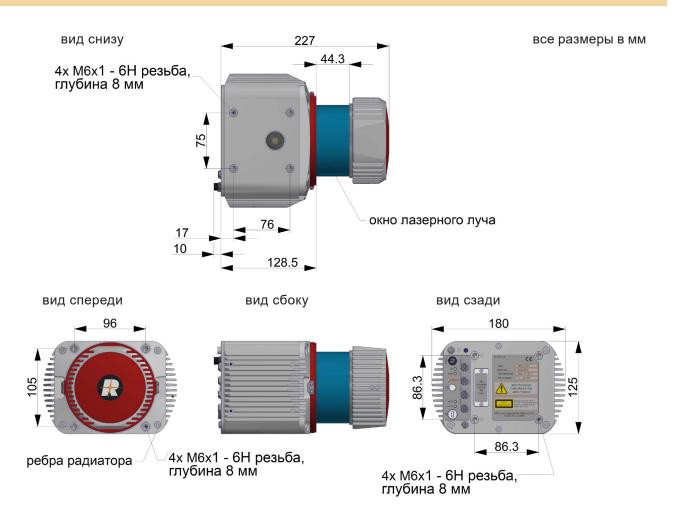
¹²⁾ без внешнего модуля ИНС/ГНСС, вентилятор охлаждения не работает
13) без внешнего модуля ИНС/ГНСС
14) Для прибора требуется конвекция воздуха с минимальной скоростью потока 5 м/с для непрерывной работы при

RIEGL VUX®-1HA²² дополнительное оборудование и интеграция

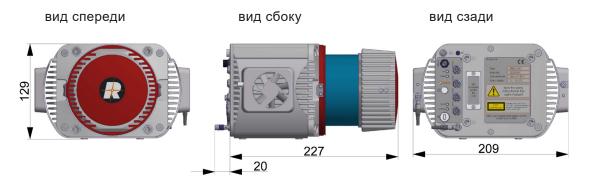
Дополнительное оборудование для RIEGL VUX-1HA²²

Вентилятор охлаждения

Легкая конструкция с двумя осевыми вентиляторами, обеспечивающими принудительную конвекцию воздуха в тех случаях, когда не может быть гарантирован достаточный естественный приток воздуха. Питание осуществляется через разъем на задней панели *RIEGL* VUX-1HA²² Охлаждающий вентилятор может быть установлен как на верхней, так и на нижней стороне сканера *RIEGL* VUX-1HA²² и входит в объем поставки сканера..


Вентилятор охлаждения необходимо устанавливать всякий раз, когда условия окружающей среды/ температура требуют его использования (см. «Диапазон температур» на стр. 2 данного технического описания).

Защитная крышка


Для обеспечения защиты стеклянной колбы сканера $RIEGL\ VUX-1HA^{22}\$ от механических повреждений и загрязнения, в комплекте поставляется защитная крышка, которая закрывает верхнюю часть прибора во время перевозки и хранения.

Дополнительные опции для интеграции RIEGL VUX-1HA²²

RIEGL разрабатывает удобные решения, ориентированные на установку и интеграцию сканера VUX-1HA 22 на любые типы движущихся платформ.

RIEGL VUX®-1HA22 с охлаждающим вентилятором

Официальным эксклюзивным дистрибьютором компании *RIEGL* в России и странах СНГ является компания «АртГео» Тел/Факс: +7 495 781 7888, E-mail: info@art-geo.ru Caйт: www.art-geo.ru, www.riegl.ru