

Роботизированная лазерная сканирующая система для железных дорог

Области применения

• Проверка железнодорожного полотна • Обследование железнодорожной инфраструктуры • Планирование и проектирование железных дорог • Съемка железнодорожных тунелей и метро • Высокоточная детальная съемка строительных площадок • Сбор данных для создания карт и планов

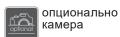
Официальный эксклюзивный дистрибьютор

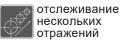
Телефон: +7 (495) 781 78 88 E-mail: info@art-geo.ru www.art-geo.ru, www.riegl.ru

Технические характеристики

Производительность лазерного сканера RIEGL VZ-400i

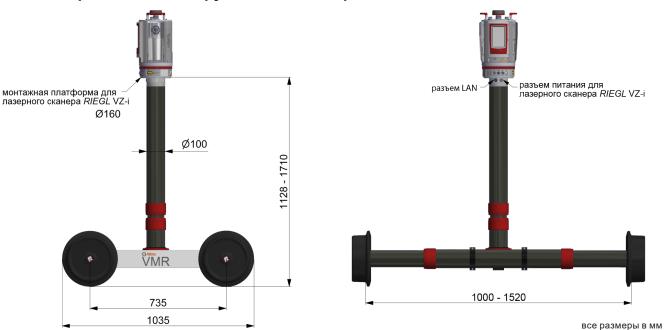
макс. диапазон измерений


частота повторения импульсов PRR



обработка формы сигнала в режиме реального времени

Wi-Fi и


Кла

1	
	1

Частота повторения импульсов PRR (пик)	100 кГц	300 кГц	600 кГц	1,200 кГц
Макс. эффективная скорость измерений (изм./сек)	42,000	125,000	250,000	500,000
Макс. дальность измерений (р ≥ 90 %)	800 м	480 м	350 м	250 м
Макс. дальность измерений (р ≥ 20 %)	400 м	230 м	160 м	120 м
Минимальное расстояние	1.5 м	1.2 м	0.5 м	0.5 м
Точность / Повторяемость	5 мм / 3 мм			
Поле зрения (FOV)	100° вертикальное / 360° горизонтальное			
Класс безопасности для глаз	Класс лазера 1 (безопасный для глаз)			

Более подробную информацию можно найти в Технических характеристиках *RIEGL* VZ-400i.

Роботизированная сканирующая система рельс RIEGL VMR

Bec 1) 2)	50 кг
Перезаряжаемый аккумулятор (сменный) Емкость Напряжение	Литиевая батарея 12S около 12.5 Ач (на 8-ми часовой рабочий день) 44.4 В
Потребляемая мощность	70-100 Вт (на время работы 8 часов)
Время установки	менее 30 минут
Экстренная остановка	доступна
Режимы работы	автоматический режим Stop & Go например, каждые 7 метров лазерное сканирование в режиме Panorama40
Ширина рельсовой колеи	регулируется от 1,000 мм до 1,520 мм

¹⁾ не включены вес аккумулятора, сканера и дополнительной камеры

²⁾ разборная, вес отдельных частей менее 20 кг

Общая информация

Роботизированная лазерная сканирующая система рельс *RIEGL* VMR разработна и предназначена для съемки регулируемой ширины колеи от 1,000 мм до 1,520 мм.

В режиме Stop & Go система VMR останавливается каждые 7 метров, выполняя более 20 миллионов измерений в минуту с миллиметровой точностью. Система может работать с максимальной скоростью 1.5 м/сек. Благодаря стабильной интеграции сканера в роботизированную платформу, постоянную центральную позицию системы на пути и постоянное расстояние между позициями

облако точек туннеля метро в градации серого

сканирования, получаемое облако точек обеспечивает отличное однородное распределение плотности точек.

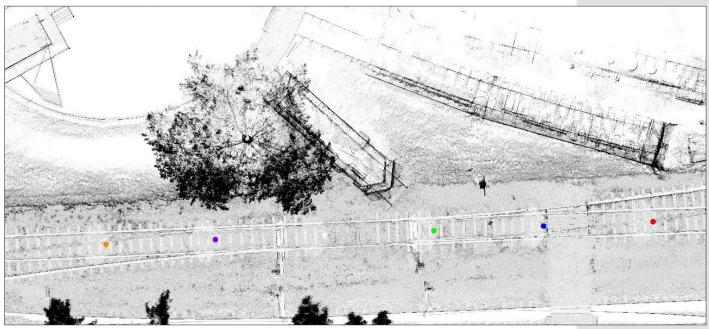
Полученные позиции сканирования атоматически регистрируются и "сшиваются" друг с другом в лазерном сканере с высокой точностью и надежностью. Паралелльно процессу сканирования 6 откалиброванных фотографий высокого разрешения могут быть получены для каждой позиции сканирования с дополнительно установленной камеры на сканер *RIEGL* VZ-400i. Эти изображения сохраняются в структуре проекта и позволяют выполнить фотореалистичное окрашивание данных сканирования.

Во время проведения съемки оператору требуется только наблюдать за процессом. Зарегистрированный данные сканирования можно проверить на мобильном устройстве. В случае непредвиденного события оператор останавливает роботизированную систему удаленной аварийной командой.

облако точек, вид сверху, цвет: рентгеновский снимок

облако точек, окрашенное с помощью фотографий

RIEGL VMR полевые испытания


RIEGL VMR: проведение съемки в режиме Stop & Go на испытательной трассе в Нижней Австрии

В процессе выполнения полевых измерений, оператор может проверить зарегистрированные позиции сканирования и данные сканирования удаленно через мобильное устройство.

Данные проекта

Дата проведения работ	3 сентября 2021
Общая протяженности железнодорожного пути	2х 550 метров (съемка в обе стороны)
Продолжительность съемки	3 часа : 21 минута
1-ая позиция сканирования (0 м)	выполнено в 10:57:50
79-ая позиция сканирования (557 м) завершение съемки железнодорожного пути в направлении вперёд	выполнено в 12:43:32
153-ая позиция сканирования (1084 м) завершение съемки железнодорожного пути в направлении назад	выполнено в 14:19:21
Время остановки в каждой позиции сканирования	70 секунд
Расстояние между позициями сканирования	7 метров
Шаблон сканирования	Panorama40 (22.5 млн. измерений)

Облако точек, ортогональный вид сверху: высокий уровень детализации железнодорожного полотна, железнодорожный просвет и окружающая область включены в набор данных сканирования.

Авторское право RIEGL Laser Measurement Systems GmbH © 2021— Все права защищены. Для использования настоящей спецификации в любых целях, кроме личных, требуется письменное согласие компании RIEGL. Настоящая спецификация внимательно проверена после составления. Однако ошибки невозможно исключить полностью, поэтому могут потребоваться изменения.

